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INVITED REVIEW

Beyond the horizon: Innovations and future directions in 
axial-spondyloarthritis

Vincenzo Venerito1*, Sergio Del Vescovo1*, Giuseppe Lopalco1, Fabian Proft2

ABSTRACT

Axial spondyloarthritis (axSpA) is a chronic inflammatory disease of the spine and sacroiliac joints. 
This review discusses recent advances across multiple scientific fields that promise to transform 
axSpA management. Traditionally, axSpA was considered an immune-mediated disease driven 
by human leukocyte antigen B27 (HLA-B27), interleukin (IL)-23/IL-17 signaling, biomechanics, and 
dysbiosis. Diagnosis relies on clinical features, laboratory tests, and imaging, particularly magnetic 
resonance imaging (MRI) nowadays. Management includes exercise, lifestyle changes, non-steroidal 
anti-inflammatory drugs and if this is not sufficient to achieve disease control also biological and 
targeted-synthetic disease modifying anti-rheumatic drugs. Beyond long-recognized genetic risks 
like HLA-B27, high-throughput sequencing has revealed intricate gene-environment interactions 
influencing dysbiosis, immune dysfunction, and aberrant bone remodeling. Elucidating these 
mechanisms promises screening approaches to enable early intervention. Advanced imaging is 
revolutionizing the assessment of axSpA's hallmark: sacroiliac bone-marrow edema indicating 
inflammation. Novel magnetic resonance imaging (MRI) techniques sensitively quantify disease 
activity, while machine learning automates complex analysis to improve diagnostic accuracy and 
monitoring. Hybrid imaging like synthetic MRI/computed tomography (CT) visualizes structural 
damage with new clarity. Meanwhile, microbiome analysis has uncovered gut ecosystem alterations 
that may initiate joint inflammation through HLA-B27 misfolding or immune subversion. Correcting 
dysbiosis represents an enticing treatment target. Moving forward, emerging techniques must 
augment patient care. Incorporating patient perspectives will be key to ensure innovations like 
genetics, microbiome, and imaging biomarkers translate into improved mobility, reduced pain, and 
increased quality of life. By integrating cutting-edge, multidisciplinary science with patients' lived 
experience, researchers can unlock the full potential of new technologies to deliver transformative 
outcomes. The future is bright for precision diagnosis, tightly controlled treatment, and even 
prevention of axSpA.
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Spondyloarthritis refers to a group of chronic 
inflammatory diseases that share common clinical 
features including inflammatory back pain, 
peripheral arthritis, enthesitis, uveitis, psoriasis, 
and inflammatory bowel disease (IBD). This disease 
concept encompasses several interrelated but 
distinct disorders: axial spondyloarthritis (axSpA), 
psoriatic arthritis (PsA), reactive arthritis (ReA), 
IBD-associated arthritis, and undifferentiated 
spondyloarthritis (Figure 1).1 They each possess 
distinct clinical phenotypes and patterns of joint 
involvement. AxSpA primarily affects the spine 
and sacroiliac joints (SIJ); PsA manifests mainly as 
peripheral-often asymmetric-oligoarthritis, axial 

disease, enthesitis, and dactylitis; ReA classically 
follows certain infections and presents with lower 
extremity arthritis and enthesitis; IBD-associated 
spondyloarthritis occurs in patients with IBDs like 
Crohn disease and ulcerative colitis.1

Specifically, axSpA refers to a group of chronic 
inflammatory diseases primarily affecting the SIJ 
and spine.2 AxSpA commonly includes two clinical 
pictures: non-radiographic axSpA (nr-axSpA) and 
radiographic axSpA (r-axSpA), historically termed 
ankylosing spondylitis (AS), depending on whether 
the axial disease has caused visible radiographical 
lesions on X-ray (fulfilling the modified New York 
Criteria (NYc) or not).3 On the contrary, the 
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notion of nr-axSpA frames the early phases of the 
disease, in which the axial involvement is marked 
by the presence of bone-marrow edema (BME) 
in the SIJ visible on magnetic resonance imaging 
(MRI). Therefore, these two entities essentially 
represent a continuum between an early and a 
more advanced stage of the same disease.4

The global prevalence of axSpA is estimated 
between 0.1-1.4%, with considerable geographic 
variation mainly attributed to differences in human 
leukocyte antigen B27 (HLA-B27) prevalence. 
HLA-B27, present in 8-10% of the general 
population, is positive in up to 90% of axSpA 
patients and is a major genetic risk factor. 
Prevalence is highest in Arctic and Northern 
European regions where HLA-B27 rates approach 
50%, such as among the Haida native peoples of 
Western Canada with axSpA prevalence from 
6-10%. In contrast, prevalence is markedly lower 
in Japan and Arab populations where HLA-B27 
rates are only 1-3%5-7. On the population level, 
prevalence estimates range from 0.24% in Greece 
to 1.8% in Northern Norway.8,9 A systematic 

review reported mean axSpA prevalence in 
Europe of 24 per 10,000 people. In Asia the 
estimate was 17 per 10,000, while North America 
ranged from 13 to 32 per 10,000.10 Although less 
studied than prevalence, incidence rates ranged 
from 5 to 15 per 100,000 person-years across 
studied populations.11

The onset of axSpA symptoms usually begins in 
early adulthood, resulting in a substantial lifetime 
burden. Patients suffer from chronic back pain 
typically with inflammatory characteristics, spinal 
stiffness, and reduced mobility.12 Therefore, the 
disease is also associated with major economic 
implications stemming from direct medical costs 
and indirect costs due to lost work productivity. 
Furthermore, structural damage is irreversible 
and leads to increasing disability, loss of quality 
of life, and need for surgical interventions over 
time.13-15

Despite the availability of effective treatments, 
an unsolved problem remains the average delay 
from symptom onset to diagnosis, which remains 
around 5-10 years globally.16,17 This diagnostic 

Figure 1. Spondyloarthritis spectrum from axial to peripheral involvement.

SpA: Spondyloarthritis; IBD: Inflammatory bowel disease.

Modified from Proft F et al. Ther Adv Musculoskelet Dis 2018;10:129-39.
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delay has motivated intensive research to better 
understand the pathophysiology and natural 
history of axSpA, and to optimize strategies 
for early identification and treatment.18 The 
emergence of MRI has been revolutionary, 
allowing direct visualization of SIJ inflammation 
years before radiographic changes appear 
and with this giving the opportunity for early 
and intensified treatments by suppressing the 
inflammatory activity enabling to even preventing 
the development of such structural changes. 
Therefore, incorporation of MRI findings into 
classification criteria has enabled earlier diagnosis 
and treatment.19

The discovery of tumor-necrosis factor-
alpha (TNF-a) and interleukin (IL)-17 as major 
inflammatory cytokines in axSpA led to the 
rise of biologic drugs targeting these mediators. 
Biologics have drastically advanced management 
of axSpA, though significant unmet needs 
remain.20 Treatment responses vary widely and 
many questions persist surrounding their long-
term impacts on controlling symptoms, preserve 
function, prevent the development of structural 
damage, and extra-articular manifestations. There 
is a need for prognostic biomarkers to predict 
disease course and response to therapies.

While advances in MRI imaging and biologic 
therapies have transformed treatment for many 
patients with axSpA critical gaps remain in 
reducing the years-long diagnostic delays that 
many patients face. To address this, optimizing 
screening and referral strategies in primary 
care is crucial, particularly for at-risk individuals 
with chronic back pain. Incorporating clinical, 
laboratory, genetic, and imaging biomarkers into 
predictive models is a promising approach to 
quantify axSpA risk earlier and enable prompt 
diagnosis and treatment, with the goal of 
improving long-term outcomes. Looking ahead, 
further research on disease mechanisms and 
new collaborations across disciplines will be key 
to advancing the field of axSpA and reducing 
the associated burden of the disease. Emerging 
fields include genetics to identify new risk factors, 
immunology to elucidate pathogenic pathways, 
microbiome studies to understand links with 
gut dysbiosis, advanced imaging techniques to 
improve diagnosis and monitoring, and digital 
tools for automated analysis and personalized 
medicine.

In summary, leveraging new technologies in 
genetics, immunology, microbiome research, 
imaging, and artificial intelligence (AI) holds 
tremendous potential to uncover axSpA 
disease insights, enable precision diagnosis and 
treatment, and ultimately improve the lives of 
patients struggling with this challenging disease. 
By pursuing a multidisciplinary approach across 
these exciting fields, researchers can pave the way 
for the next generation of innovations in axSpA 
care.21

TradiTional undersTandings

Pathophysiology

Axial spondyloarthritis results from multiple 
interacting factors including genetic risks, immune 
dysregulation, biomechanics, and environmental 
triggers.22 While PsA is traditionally considered 
an enthesitis-driven disease,23 in axSpA several 
evidence indicates bone marrow inflammation 
is a central early event.24,25 Thus, MRI reveals 
that BME and osteitis frequently precede clinical 
and radiological enthesitis.24 Hence, the bone 
marrow provides an immunologically rich milieu 
where stromal and immune cells propagate 
inflammation and aberrant bone remodelling.26 
Then, communication likely occurs between 
affected marrow and entheses via cytokines, 
immune cell trafficking, and anatomical links.26

Genetically, HLA-B27 is the major risk allele, 
present in up to 80-90% of AS patients,2 but the 
exact pathogenic mechanisms remain unclear. 
Many other genes related to cytokine signaling, 
antigen processing, and innate immunity also 
contribute.27

In terms of immune dysregulation, both arms 
of the immune system contribute to axSpA 
pathogenesis. A key pathway implicated is the 
IL-23/IL-17 axis.28 IL-23 produced by antigen-
presenting cells can activate innate lymphoid cells 
such as type 3 innate lymphoid cells (ILC3s), as 
well as innate-like T cells including MAIT and gd 
T cells, stimulating them to produce IL-17, IL-22, 
and other inflammatory mediators. Expanding 
populations of IL-17-secreting cells drive tissue 
inflammation and damage.29-32 Although adaptive 
CD4+ TH17 cells also expand in axSpA patients, 
the relative contribution of innate versus adaptive 
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sources of IL-17 remains unclear. An imbalance 
exists between pro-inflammatory TH17 cells 
and regulatory T cells that normally maintain 
self-tolerance. Other relevant cytokines driving 
inflammation include TNF-a, IL-1, and IL-22. 
The role of B cells and autoantibodies is still 
emerging.33,34

Biomechanics contribute through microtrauma 
and stresses at entheses that could initiate 
inflammation in susceptible individuals.35 
Mechanical instability helps propagate and localize 
inflammation. Hence, facet joints, SIJ, and spinal 
entheses endure considerable stresses and are 
early sites of inflammation.36,37

Environmental triggers like dysbiosis, leaky 
gut, and infections provide further stimulation. 
The linkage between gut and joint inflammation 
supports the gastrointestinal immune 
environment's contribution.38

In summary our understanding of axSpA 
pathophysiology has progressed substantially 
in recent years. The foundation of such 
evolving perspective is the recognition of the 
multilayered, intricate interactions underlying 
disease pathophysiology. Genetic risks, immune 
dysregulation, biomechanical factors, and 
environmental triggers collectively propagate 
aberrant inflammation and tissue damage. 
Communication likely occurs between affected 
sites via cytokines, trafficking immune cells, 
and anatomical connections. Of particular 
significance is the bone marrow inflammation 
nowadays considered as an early central event, 
often preceding clinical signs. MRI bone marrow 
findings frequently emerge first, providing an 
immunologically rich nexus where inflammation 
originates.26

diagnosis

The diagnosis of axSpA can be challenging due 
to the lack of a single confirmatory test. AxSpA 
should be suspected in patients with chronic back 
pain starting before the age 45 along with signs 
and symptoms suggestive of SpA. The typical 
features of inflammatory back pain include 
insidious onset, improvement with exercise but not 
rest, pain at night, and morning stiffness lasting 
over 30 minutes. Other indications for axSpA 
include presence of HLA-B27, a family history 
of SpA, elevated C-reactive protein (CRP) levels, 

extra-articular manifestations (uveitis, psoriasis, 
inflammatory bowel disease), peripheral arthritis, 
enthesitis, and good response to non-steroidal 
anti-inflammatory drugs (NSAIDs).39

Imaging plays a fundamental role in the 
diagnostics process, with conventional radiography 
of the SIJ being the recommended first imaging 
modality in suspected axSpA.40 Radiographic 
sacroiliitis (erosions, sclerosis, joint space 
widening, ankylosis) confirms a diagnosis, but has 
low sensitivity in early disease.41 If radiographs 
are negative or equivocal, MRI of the SIJ should 
be performed. MRI can detect BME and osteitis 
indicating active inflammation. Various structural 
lesions may also be seen including erosions, 
sclerosis, fat lesions, and ankylosis. However, 
there are some limitations with MRI. Bone 
marrow edema is not entirely specific for axSpA, 
as it can occur to some degree with mechanical 
back pain, postpartum, heavy exercise, and even 
in healthy individuals.42,43 Location, extent, and 
combination with structural lesions may increase 
specificity. Therefore, MRI interpretation requires 
experienced readers.21,44,45 MRI of the spine has 
minimal incremental value for diagnosing axSpA 
when MRI of the SIJ is already performed. 
However, in patients where SIJ MRI is equivocal 
or normal, additional spine MRI may increase 
diagnostic sensitivity by 15-20%.44 On the other 
hand, it should be taken into account that vertebral 
corner BME and fat metaplasia also occur in 
healthy individuals and those with non-specific 
back pain.46 Hence, MRI of both the spine and SIJ 
is not universally recommended,47 although spine 
MRI can be considered in certain circumstances 
such as high clinical suspicion despite normal SIJ 
MRI.44 Moreover, spine MRI may predict disease 
progression since inflammation or fat metaplasia 
has been traditionally considered to be associated 
with new syndesmophytes formation,48,49 even 
if new evidence found that vertebral corner 
inflammation may actually lead to new bone 
formation, but only in a minority of cases via 
visible fat deposition.50

No serologic markers are confirmatory for 
axSpA. HLA-B27 positivity has about 90% 
specificity, but sensitivity around 50%.51 Elevated 
CRP supports inflammation but is normal 
in a relevant proportion of axSpA patients52 
and can also be seen in other inflammatory 
circumstances. 
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Various classification criteria for axSpA have 
been developed to standardize enrolment in 
clinical trials and research. However, no universal 
diagnostic criteria exist. The Assessment of 
SpondyloArthritis international Society (ASAS) 
axSpA criteria allow MRI evidence of sacroiliitis 
to substitute for radiographic damage.19 It is of 
great importance to underline that classification 
criteria might be used and are intended only 
to recruit a homogeneous group of patients 
into clinical trials and not to establish a clinical 
diagnosis. While intended for classification, the 
ASAS criteria are often used misused clinically, 
which may lead to some over-diagnosis.53

The diagnosis of axSpA comes from a 
thorough and multifactorial assessment of the 
patients which is the combination of clinical, 
laboratory, genetical and imaging evaluation. 
There should be a high index of suspicion in 
the appropriate demographic with suggestive 
symptoms and signs. Diagnostic evaluation 
incorporates patient history, physical exam, 
laboratory tests, and imaging to support the 
diagnosis, rule out mimics, and assess for poor 
prognostic factors that may guide therapy.54

Treatment
The 2022 ASAS-European Alliance of 

Associations for Rheumatology (EULAR) 
recommendations update emphasize a personalized 
approach to managing axSpA, with treatment 
tailored to the individual patient. A combination 
of non-pharmacological and pharmacological 
treatments is recommended.55

For non-pharmacological management, all 
patients should receive education about axSpA 
and be encouraged to exercise regularly and stop 
smoking. Physiotherapy and supervised exercise 
programs should be considered, particularly for 
patients who do not exercise independently, as 
they have proven benefits.55

For pharmacological treatment, NSAIDs are 
recommended as first-line drugs to control pain 
and stiffness. Continuous NSAID use is preferred 
if needed to control symptoms, but intermittent 
‘on-demand’ use can be considered if continuous 
treatment is not required. If NSAID treatment 
fails, is contraindicated, or poorly tolerated, 
biological (b) or targeted synthetic (ts) DMARDs 
should be considered for patients with high 
disease activity despite conventional treatments. 

Eligibility criteria include confirmed diagnosis 
of axSpA: for r-axSpA high disease activity 
(Ankylosing Spondylitis Disease Activity Score 
[ASDAS] ≥2.1 or Bath Ankylosing Spondylitis 
Disease Activity Index [BASDAI] ≥4) and failure/
contraindications for NSAIDs, while in nr-axSpA 
in addition to high disease activity and failure/
contraindications for NSAIDs evidence of 
objective signs of inflammation (elevated CRP 
and/or positive MRI of the SIJ)55 are needed.

According to the international treatment 
recommendations, it is current practice to start 
with TNF inhibitors (TNFi) or IL-17 inhibitors 
due to greater clinical experience and longer 
safety data. Janus kinase inhibitors (JAKi), like 
tofacitinib and upadacitinib are newer small 
molecule tsDMARDs that inhibit intracellular 
JAK-Signal Transducer and Activator of 
Transcription (STAT) signaling pathways and 
have demonstrated efficacy for active axSpA 
in clinical trials. However, long-term safety 
data for JAKi in axSpA patients is still limited 
compared to TNFi and IL-17i. Caution is 
advised when using JAKi in older patients and 
those with cardiovascular risk factors, until 
more safety evidence accumulates. Choice 
of b/tsDMARD may also be guided by extra-
articular manifestations. Anti-TNF monoclonal 
antibodies are preferred for patients with 
recurrent uveitis or active IBD, while IL-17i may 
be preferred for patients with significant skin 
psoriasis (PsO). If the initial b/tsDMARD fails, 
switching to another b/tsDMARD should be 
considered after re-evaluating the diagnosis and 
comorbidities. On the contrary, if a patient is 
in sustained remission, tapering of a bDMARD 
can be considered. At this regard, an increasing 
number of evidence shows that abruptly 
withdrawing bDMARDs may lead to a high 
proportion of flares. On the contrary, tapering 
was shown to be successful in maintaining 
treatment response efficiently in a relevant 
number of patients.55

Radiographic damage and loss of function 
may require surgical interventions like total 
hip arthroplasty or spinal osteotomy, even 
if fortunately, this is not frequently needed 
anymore. Moreover, potential fractures should 
be evaluated in patients with sudden worsening 
symptoms.55
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In summary, the 2022 ASAS-EULAR 
recommendations provide an up-to-date, 
evidence-based guide for optimal management of 
axSpA, with a focus on individualized treatment 
approaches.

innovaTions in The Field oF 
axsPa

a. genetics

Axial spondyloarthritis has a strong genetic 
component, with heritability over 90%. The 
major genetic association is with HLA-B27, 
which accounts for approximately 20-30% of 
overall disease risk. However, HLA-B27 alone 
is not sufficient to cause axSpA. In addition to 
HLA-B27, over 100 non-MHC susceptibility 
loci have now been identified through genome-
wide association studies (GWAS).56 Each not-
HLA variant confers only modest individual 
risk, reflecting the highly polygenic nature of 
axSpA. The majority of implicated genes are 
involved in antigen presentation (ERAP1/2), 
cytokine signaling (IL23R, IL12B, TYK2), 
T-cell differentiation (RUNX3, IL7R), and innate 
immunity (CARD9, TNFRSF1A). These genetic 
findings implicate altered adaptive and innate 
immune responses in axSpA pathogenesis.27,56,57

While HLA-B27 is unequivocally the major 
axSpA genetic factor, its precise molecular 
role has remained elusive despite extensive 
research. Proposed mechanisms include altered 
peptide binding and presentation, induction of 
endoplasmic reticulum (ER) stress and unfolded 
protein response, and homodimer formation. 
Recent T cell repertoire studies have provided 
some support for the long-debated arthritogenic 
peptide model.58-62 These have identified expanded 
clonotypes of CD8+ T cells in AS patients that 
recognize specific HLA-B27-bound self-peptides, 
suggesting HLA-B27 may aberrantly present 
certain joint-derived autoantigens to autoreactive 
T cells. More functional genomics work is still 
needed to clarify the mechanisms behind most 
genetic findings in axSpA, including HLA-B27. 
Resolving these knowledge gaps remains an 
area of active investigation and is critical to 
understand axSpA pathogenesis at the molecular 
level.

Recent genetic studies have revealed 
intriguing differences between male and female 
axSpA patients. The association of HLA-B27 
appears stronger in men, and certain non-
MHC variants like progressive ankylosis protein 
homolog (ANKH) are associated with r-axSpA 
specifically in males.63,64 Females likely require 
a higher cumulative genetic burden to develop 
axSpA, possibly due to X-chromosome effects 
and protective mechanisms like estrogen. One 
important observation is that in MRI studies, 
HLA-B27 associates with more sacroiliac 
inflammation in axSpA males but not females. 
In females, factors like obesity and pregnancy 
history are more relevant to MRI sacroiliitis 
findings.65 This indicates HLA-B27 positivity 
should be interpreted differently in women 
with chronic back pain versus men. These sex 
differences have led to proposals that rather than 
a classical susceptibility allele, HLA-B27 may act 
as a modifier influencing disease severity and 
progression in those who develop axSpA. In this 
model, HLA-B27 promotes more severe axial 
inflammation and radiographic changes in males 
once disease is triggered. In females, axSpA is 
less HLA-B27 dependent and possibly involves 
more complex gene-hormone-environment 
interactions.

The genetic discoveries in axSpA are 
beginning to enable personalized medicine 
approaches, although clinical translation 
remains limited. Polygenic risk scores (PRS) 
combining hundreds of risk alleles could 
effectively stratify individuals by genetic disease 
risk to guide prevention and early intervention.66 
A polygenic risk score incorporating HLA-
B27 and other genetic loci shows excellent 
predictive power for diagnosing axSpA in 
European cohorts with a receiver operating 
curve (ROC) analysis that showed an area 
under the curve (AUC) of 0.924 (95% CI: 
0.920-0.928), superior to HLA-B27 testing 
alone, the latter with an AUC of 0.869 (95% 
CI: 0.865-0.874).67 Pharmacogenomics may 
eventually allow genetics-tailored treatments, 
as response to TNFi associates with certain 
HLA and cytokine genotype variants. However, 
substantial validation is still required before 
genetics-based management can be widely 
implemented. The predictive utility of PRS 
for prognosis or treatment response is still 
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uncertain. PRS have poor predictive value 
for general population screening. In addition, 
most findings derive from populations of 
European descent, indicating PRS may need 
customization for diverse ethnic groups.67

In summary, ongoing genomic research and 
translation of genetic findings into clinically 
applicable tools is critical to achieve the promise 
of personalized axSpA prevention, diagnosis, 
prognosis, and treatment based on an individual’s 
genetic makeup.

b. immunology and serum biomarkers

Innate immune responses likely play the central 
role initiating inflammation in axSpA. Cells of the 
innate and innate-like immune systems exhibit 
functional alterations and accumulate at target 
tissue sites. Monocytes/macrophages, mast 
cells, and innate lymphoid cells (ILCs) produce 
inflammatory cytokines including IL-23, IL-17, 
TNF-a, and are expanded systemically and locally 
in axSpA patients.31,68,69 Furthermore, neutrophils 
demonstrate enhanced NETosis.70,71 gd T cells 
and mucosal-associated invariant T (MAIT) cells, 
though technically T cells, exhibit innate-like 
behaviors and are also implicated as sources of 
IL-17.29,30,72,73

The contributions of adaptive immunity 
in disease onset are less defined but likely 
important in propagating chronic inflammation. 
Autoreactive TH1 and TH17 cell populations 
recognizing joint-derived antigens accumulate in 
target tissues, which may be driven by molecular 
mimicry between microbial and self-antigens.58,59,74 
Though B cells and ectopic lymphoid neogenesis 
can be detected in tissue lesions, the functional 
relevance of autoantibodies like anti-CD74 
remains uncertain.75

The IL-23/IL-17 axis is consistently implicated 
in early and established axSpA. IL-23 appears 
important in initial inflammation but becomes less 
critical once IL-17-secreting innate populations are 
expanded, which may explain the failure of IL-23 
inhibition in treating active axSpA. Thus, ongoing 
innate production of IL-17 independent of IL-23 
stimulation likely sustains chronic inflammation.76 

Immune function could be influenced and 
stimulated by several stimuli, each of them known 
as an etiological factor in axSpA. Therefore, 
dysbiosis enables translocation of microbial 

ligands that can trigger innate immune activation 
both locally and systemically.38 The unfolded 
protein response and ER stress induced by HLA-
B27 misfolding may further stimulate cytokine 
production in antigen presenting cells.60 Finally, 
biomechanical factors also influence disease 
initiation and progression, potentially through 
microdamage sensed by resident innate immune 
cells.36 In summary, both arms of the immune 
system make important contributions to axSpA 
pathogenesis. However, dysregulated innate 
immunity may play the dominant role in initiating 
and perpetuating disease; moreover, recent works 
indicated an involvement of the complement 
system as well, a cornerstone of the innate 
immune system.77

The identification of serum biomarkers that 
improve upon current tools for diagnosing and 
managing axSpA remains an active area of 
investigation. Most efforts have focused on 
analytes reflecting activation of the innate immune 
pathways implicated in disease. Acute phase 
reactants like CRP and erythrocyte sedimentation 
rate (ESR) lack sensitivity and specificity for 
axSpA. Similarly, cytokines like IL-17, IL-23, 
TNF-a, and matrix metalloproteinases (MMPs) 
demonstrate intermittent elevation in patient 
subgroups but perform inconsistently in diagnosis 
and monitoring. Calprotectin levels correlate with 
MRI inflammation in some studies but do not 
outperform clinical criteria.78

Anti-CD74 antibodies exhibit diagnostic 
potential given their high specificity, but 
failed validation in certain cohorts. Additional 
autoantibodies like anti-sclerostin and anti-noggin 
may have utility in patient subgroups but require 
larger scale confirmation. Bone turnover markers 
like sclerostin showed to be reduced in axSpA 
compared to healthy controls but this is not a 
specific finding. Circulating collagen fragments, 
cartilage oligomeric matrix protein (COMP), 
aggrecan, and other tissue breakdown products 
appear elevated in-patient serum. Combinations of 
these biomarkers of cartilage/matrix destruction 
show promise in predicting MRI and radiographic 
defined inflammation and damage in preliminary 
studies. However, they require validation in larger 
patient cohorts.78

Transcriptomic profiling has identified miRNA 
signatures that can differentiate axSpA from 



Arch Rheumatol498

chronic back pain. miR-29 is among the most 
reproducibly dysregulated across studies and 
influences pathways of relevance to axSpA 
pathogenesis, although larger studies are needed 
to validate the clinical utility of miRNA profiles.78,79 
In summary, currently described serum biomarkers 
have generally failed to outperform CRP for 
diagnosing and monitoring axSpA in the clinic. 
Combinations of tissue breakdown products, 
autoantibody profiles, microRNAs, and gene 
scores may eventually provide superior biomarkers 
to guide management, though extensive further 
validation is still required.

c. Microbiome

The gut microbiome refers to the vast 
community of microorganisms inhabiting the 
gastrointestinal tract. This includes bacteria, 
viruses, fungi and other microbes living in a 
complex, interdependent ecosystem. In this regard, 
dysbiosis refers to an imbalance or alteration of 
this microbial ecosystem. It is associated with 
several autoimmune, inflammatory, and metabolic 
diseases.80 In axSpA, particularly, dysbiosis may 
contribute to disease through various mechanisms:

a) interaction with hla-B27

Animal studies of HLA-B27 transgenic rats 
indicate gut microbes may initiate HLA-B27 
misfolding and improper immune reactions that 
ultimately drive inflammatory responses against 
joints and spine.81,82 For example, germ-free 
HLA-B27 rats do not develop SpA symptoms, 
while conventional rats with normal gut 
microbiota do.83 Specific bacteria like Klebsiella 
pneumoniae showing molecular mimicry to 
HLA-B27 could be triggering factors.84

b) increased intestinal permeability

In axSpA patients, even without clinically 
apparent bowel inflammation, microbial imbalance 
and inflammatory cytokines may impair intestinal 
barrier integrity. This “leaky gut” enables 
translocation of bacteria and their products across 
the intestinal wall, activating immune cells and 
promoting systemic inflammation. Hence, studies 
show reduced expression of tight junction proteins 
and increased intestinal permeability in axSpA 
patients compared to healthy controls; perhaps, 
targeting increased gut permeability could be a 
potential disease modifying strategy.84,85

c) immune system dysregulation

The gut microbiota interacts extensively with 
intestinal immune cells, regulating processes like 
immunoglobuline (Ig)A production, epithelial 
barrier function, and T-cell differentiation through 
pattern recognition receptors (PRRs) like toll-like 
receptors. Dysbiosis in axSpA patients may alter 
these communications and dysregulate intestinal 
and systemic immunity. For instance, altered 
microbiota composition may disrupt the TH17/
Treg balance, driving pro-inflammatory TH17 
responses.86 Segmented filamentous bacteria are 
potent inducers of TH17 cells while specific 
Clostridia strains promote Treg differentiation.87,88 
Correcting such immune deviations could help 
restore homeostatic equilibrium.

d) Metabolite changes

The microbiome produces many bioactive 
metabolites through its metabolic activities. For 
example, bacterial fermentation of dietary fibers 
yields short-chain fatty acids (SCFAs) like butyrate 
which have anti-inflammatory properties.89 In 
axSpA, reduced abundances of SCFA-producing 
symbionts like Faecalibacterium prausnitzii 
could decrease levels of beneficial metabolites.90 
Additionally, increased pathobionts or altered 
microbial gene expression may favor production 
of detrimental mediators like lipopolysaccharides 
(LPS), contributing to immune activation. 
Metabolomic analyses can identify microbiome-
derived metabolites that drive or suppress 
inflammation.84

Therefore, researchers have made great 
strides in characterizing the involvement of 
the gut microbiome in axSpA using advanced 
genetic sequencing techniques. 16S rRNA 
gene sequencing of stool samples has revealed 
altered bacterial diversity and species richness in 
axSpA patients compared to healthy individuals. 
This altered diversity indicates an unstable gut 
ecosystem prone to dysbiosis that lacks resilience 
against inflammatory triggers.91 Specific bacterial 
taxa linked to inflammatory processes appear 
increased in abundance in the microbiome profiles 
of axSpA patients. For example, Klebsiella 
pneumoniae and Proteobacteria, which can 
trigger HLA-B27 reactions, are often elevated.91 
In contrast, potentially anti-inflammatory bacteria 
like Faecalibacterium prausnitzii, a major 
butyrate producer, consistently decline in axSpA 
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patients.89 Reduced levels of beneficial microbes 
linked to enhanced mucosal barrier function are 
also commonly observed. The lower amounts 
of these symbiotic microbes may perpetuate 
inflammation.91,92

Metagenomic shotgun sequencing provides 
insights into microbiome functionality by profiling 
microbial genes and metabolic pathways. In 
axSpA patients, alterations are seen in genes 
involved in vitamin biosynthesis, LPS production, 
and tryptophan metabolism. Of note, tryptophan 
can be converted to several molecules which are 
able to shape the function of the immune system 
and the inflammatory functions, like kynurenines 
or anti-inflammatory indole derivatives based on 
the microbial profile.93-95 Importantly, many of 
these microbiota changes correlate with clinical 
and inflammatory markers of axSpA. For instance, 
bacterial dysbiosis associates with levels of CRP, 
calprotectin, and IL-17. Mucosal inflammation and 
intestinal lesions are more severe in patients with 
higher dysbiosis levels. Microbiome parameters 
also correlate with ASDAS score indicating 
microbial alterations may reflect axSpA disease 
activity and pathogenic processes.96,97

In summary, the gut microbiota is complexly 
involved in axSpA pathogenesis. Ongoing 
research is unravelling unique microbial signatures 
in patients and identifying new therapeutic 
opportunities based on restoring gut homeostasis. 

d. imaging

Imaging plays a critical role in the diagnosis 
and management of axSpA. Recent technological 
advances along with standardized image 
acquisition protocols and validated definitions for 
positive imaging findings have led to dramatic 
improvements in axSpA imaging and enhanced 
diagnostic confidence.

Conventional radiography has been the 
traditional first-line imaging modality when axSpA 
is suspected clinically.40 However, growing evidence 
indicates important limitations of radiography in 
detecting early inflammatory lesions or structural 
damage compared to advanced cross-sectional 
imaging now available.98,99 Pelvic radiography is 
widely accessible but imparts radiation exposure. 
In contrast, multiple studies have demonstrated 
poor reliability and high interobserver variation 
in interpreting SIJ radiographs, even among 

experienced readers.100 Compared to MRI or 
CT, radiography has inferior sensitivity for 
visualizing the entire spectrum of inflammatory 
and structural lesions that may develop in the 
SIJ and spine throughout the disease course of 
axSpA. Given the clear limitations of radiography 
and the presence of state-of-the-art alternatives 
providing unmatched visualization of early axSpA 
lesions, it may be time to re-assess the role of 
pelvic radiography as a first-line imaging modality 
when axSpA is suspected in routine clinical 
practice.101,102

Magnetic resonance imaging has become 
an imaging cornerstone of axSpA, offering 
unparalleled detection of early inflammatory and 
structural lesions. Recent advances in 3T MRI 
technology further optimize axSpA evaluation 
with substantially higher signal-to-noise ratio, 
improved spatial resolution, and accelerated 
parallel imaging capabilities compared to 
conventional 1.5T MRI systems.103-105 Consensus 
definitions for positive MRI findings in axSpA 
have been proposed through international 
collaborations like the ASAS MRI group.106 
Recently, this group reported data-driven cut-offs 
for MRI lesions considered highly suggestive of 
axSpA after two large-scale reading exercises.106 
Importantly, these cut-offs incorporate both 
active and structural lesion types. For active 
lesions, the presence of BME in at least four 
quadrants of the SIJ or in three consecutive MRI 
slices demonstrated high specificity for axSpA. 
The positive predictive value of BME is further 
increased when erosion or other structural 
lesions are also visible. Meanwhile, structural 
lesions including erosions affecting at least three 
SIJ quadrants or fat metaplasia lesions in five or 
more quadrants were found to be highly specific 
for axSpA. Having erosion visible on at least 
two consecutive MRI slices or fat lesions on 
at least three consecutive MRI slices was also 
deemed highly suggestive of axSpA. Fat lesions 
with a depth over 1 cm were also proposed as 
a cut-off. These cut-offs reinforce interpreting 
SIJ MRI based on the collective impact of 
concomitant inflammatory and structural lesions 
rather than potentially non-specific findings in 
isolation. This contextual approach to image 
assessment enhances diagnostic confidence 
compared to outdated qualitative paradigms 
focused predominantly on BME.106
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Beyond conventional MRI, quantitative 
MRI techniques enable objective, sensitive 
quantification of inflammation.107-109 However, 
substantial work remains to standardize protocols, 
demonstrate multicenter reproducibility, and 
validate clinical utility before quantitative MRI is 
ready for clinical adoption.

Some candidate quantitative MRI methods 
include T2 mapping, diffusion weighted imaging, 
and dynamic contrast enhanced MRI. Each of 
these techniques provides quantitative biomarkers 
reflecting pathophysiological processes like 
edema, cellularity, and perfusion. In the future, 
quantitative MRI has enormous potential to 
enable sensitive disease monitoring to guide 
personalized treatment decisions. It could also 
improve sensitivity for detecting change in 
clinical trials or observational studies. However, 
large multicenter trials will be instrumental to 
validate these techniques across diverse MRI 
platforms before quantitative MRI can reach its 
full potential.110,111

While MRI excels at assessing inflammatory 
lesions, CT remains unsurpassed for visualizing 
structural bone damage, especially subtle cortical 
breaks.112,113 However, standard CT protocols 
result in high cumulative radiation exposure, 
precluding routine use for lifelong monitoring 
in axSpA patients. Low-dose CT protocols 
provide an elegant solution through modulating 
tube current and voltage to substantially reduce 
radiation dose while maintaining sufficient image 
quality to assess structural lesions. Noise is 
controlled through iterative reconstruction 
algorithms.114,115 Early research consistently 
demonstrates the superiority of low-dose CT 
protocols compared to radiography for detecting 
erosions, sclerosis, and syndesmophytes 
while delivering a similar radiation exposure. 
Low-dose CT provides an alternate means to 
evaluate structural damage in cases where MRI 
is indeterminate or contraindicated.116 However, 
MRI remains necessary to visualize active 
inflammation. The precise clinical role for low-
dose CT as a supplement to or replacement 
for MRI or radiography continues to be defined 
through ongoing studies.

Finally, beyond the traditional visual and 
qualitative elaboration of imaging data, radiomics 
involves the high-throughput extraction of 

quantitative imaging features that can capture 
tissue heterogeneity and microarchitecture that 
is not discernible through visual assessment.117-119 
Radiomics is an emerging technique that may 
have utility for improving evaluation of axSpA. 
In radiomics, a large number of quantitative 
imaging features are extracted from medical 
images through automated algorithms. Studies 
have investigated using radiomic analysis of MRI 
images of the SIJ to identify imaging biomarkers 
associated with sacroiliitis, SpA diagnosis, 
and subclassification into axial vs. peripheral 
subtypes.120-123 For example, one study extracted 
over 1,200 texture features from manually 
segmented SIJ MRI images and identified 
features that showed significant differences 
between positive and negative sacroiliitis cases.122 
A radiomics signature combining multiple features 
demonstrated good discrimination for diagnosing 
sacroiliitis with an AUC of 0.82.121 Another study 
found certain features differed between axial and 
peripheral SpA and could distinguish subtypes 
with excellent accurac.120

These preliminary results suggest radiomics 
can potentially identify imaging biomarkers linked 
to disease characteristics, activity, and outcomes. 
This could enable more objective, quantitative 
evaluation of important MRI features like BME 
that currently rely on subjective visual assessment. 
However, there are several limitations. Small 
sample sizes, lack of independent validation 
cohorts, and variability in methods across studies 
make findings exploratory.

There is a need for larger, multicenter studies 
to validate the reproducibility and added value 
of radiomic techniques compared to current 
imaging methods. Extraction of radiomic data 
requires segmentation of target regions, which 
can be time-consuming and limit adoption. 
Automated segmentation methods optimized 
for SIJ are needed. The complex, multivariate 
nature of radiomics data also requires specialized 
biostatistical and machine learning expertise. 
Despite promising preliminary results, it remains 
to be determined whether radiomics provides 
sufficient added diagnostic, prognostic, or 
monitoring value above current MRI techniques 
in axial SpA. As methods mature, radiomics may 
become a useful imaging biomarker for precision 
medicine approaches, but significant research is 
still needed to demonstrate clinical utility in SpA.
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Table 1. Imaging in axSpA

Imaging modality Role in axial SpA 
diagnosis and 
management

Advantages Limitations Potential future 
developments

References

Conventional radiography Traditional first-line 
imaging when axSpA 
is suspected clinically.

Widely accessible Radiation exposure, 
limited sensitivity for 
early inflammatory 

and structural lesions. 
High interobserver 

variation.

Reassess role in 
routine clinical 

practice.

40,101

MRI One-stop shop for 
detecting early 

inflammatory and 
structural lesions.

High sensitivity for both 
inflammation and 
structural damage. 

Ongoing technological 
advancements 

(3T MRI).

Requires specialized 
equipment, expert 

readers, higher cost 
compared to 
radiography.

Quantitative MRI 
techniques for 

sensitive inflammation 
quantification.

103-106

CT Unsurpassed for 
visualizing structural 

bone damage, 
including subtle 
cortical breaks.

Low-dose CT 
protocols reduce 

radiation exposure 
while maintaining image 

quality.

Radiation exposure, 
limited for assessing 

inflammation.

Defining clinical role 
as a supplement or 

replacement for MRI 
or radiography.

112-116

Quantitative MRI Potential for 
sensitive 

quantification of 
inflammation.

Provides quantitative 
biomarkers reflecting 

edema, cellularity, and 
perfusion.

Standardization, 
multicenter 

reproducibility, and 
clinical validation 

required.

Enabling 
personalized 

treatment and 
improving sensitivity 

in clinical trials.

107-111

Radiomics Emerging technique 
for improved 
evaluation.

High-throughput 
extraction of 

quantitative imaging 
features capturing tissue 

heterogeneity.

Limited by small 
sample sizes, lack of 

independent 
validation, and 

variability in methods.

Validation in larger 
multicenter studies, 

development of 
automated 

segmentation 
methods.

117-121

axSpA: Axial spondyloarthritis; SpA: Spondyloarthritis; MRI: Magnetic resonance imaging; CT: Computed tomography.

In summary, advanced imaging technologies 
now provide diverse options beyond conventional 
radiography to assess the myriad lesions 
occurring in the axial skeleton throughout the 
course of axSpA. Dedicated SIJ MRI offers 
unparalleled visualization of early inflammatory 
and structural damage while low-dose CT provides 
exquisite detail of cortical breaks. Quantitative 
MRI shows enormous promise for enabling 
sensitive quantification of inflammation to guide 
personalized medicine approaches. Further 
research and multidisciplinary collaboration will 
be key to validate these technologies and fully 
translate their potential to improve patient care 
into clinical practice (Table 1).

e. artificial intelligence

Interpretation of axSpA imaging can be 
challenging due to complex anatomy, variable 
disease manifestations, and overlap with 
degenerative changes. There has been increasing 

interest in using AI and machine learning to 
improve and automate axSpA imaging analysis.

For conventional radiography, most research 
has focused on using convolutional neural 
networks (CNNs) to classify sacroiliitis severity 
based on the modified New York criteria. Multiple 
studies have shown CNNs can differentiate 
normal from definite sacroiliitis (Grade 
≥2 bilaterally or ≥3 unilaterally) with accuracy of 
89-97%, sensitivity of 79-91%, and specificity of 
79-96%, comparable to rheumatologists. CNNs 
have also been applied to directly localize SIJ 
erosions, sclerosis, and ankylosis.124

In MRI of the SIJ, common machine learning 
applications include detecting BME, a hallmark 
of inflammation.125-128 Various supervised and 
deep learning approaches have been explored, 
including thresholding, classical machine learning 
with hand-crafted features, and CNNs. Reported 
diagnostic accuracy has been variable, likely 
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related to differences in MRI protocols, gold 
standards, and class balance across single-
center studies. However, several CNNs have 
achieved sensitivity and specificity comparable 
to experts, with a retrospective multicenter study 
showing a deep neural network outperforming 
non-musculoskeletal expert radiologists.128 Spatial 
attention mechanisms, multi-sequence analysis, 
and clinical data integration have improved model 
performance. Recent studies show feasibility 
of automating full SpondyloArthritis Research 
Consortium of Canada (SPARCC) scoring with 
CNNs, although reliability in this case remains 
inferior to human experts.129 For spinal MRI, 
limited research has applied CNNs to detect 
vertebral corner inflammatory lesions or total 
inflammatory lesions, but substantial challenges 
exist in automating full spine analysis given 
the large search space and lack of robust gold 
standards.130

Alternative AI applications in axSpA imaging 
include predicting radiographic progression with 
CNNs,131 response to bDMARDs treatments132,133 
and generating synthetic MRI/CT images. 
Synthetic CT generated from MRI has recently 
emerged as a promising technique to improve 
assessment of structural lesions in axSpA. Deep 
learning-based algorithms allow reconstruction 
of CT-like images from specific MRI sequences. 
Several studies have demonstrated that synthetic 
CT can visualize SIJ erosions, sclerosis, and 
ankylosis with greater sensitivity and specificity 
compared to standard MRI sequences. The 
improved cortical bone delineation enables more 
reliable detection of subtle structural lesions that 
may be overlooked on routine MRI. Enhanced 
diagnostic performance was confirmed using 
conventional CT as the reference standard. 
Synthetic CT imaging may thus expand the utility 
of MRI for evaluating early structural damage in 
axSpA, without requiring additional CT radiation 
exposure.

While AI techniques are being applied to 
improve imaging-based assessments in axSpA, 
large language models like GPT-4, LLaMA, 
Bard or Claude have the potential to act as 
surrogate patient reported outcome measures 
(PROs) by generating text summarizing patient 
symptoms and experience.134,135 By analyzing 
the text from language models, quantitative 
measures of symptoms could be extracted to 

track outcomes over time. Potential benefits 
of using language models as surrogate PROs 
include reducing patient burden, enabling more 
frequent tracking of outcomes, and capturing 
richer qualitative information on patient 
experience. Challenges include ensuring 
the language model text accurately reflects 
patient symptoms, mapping text to quantitative 
outcomes, and validating performance against 
traditional PROs.134,135

Despite promising results, adoption of AI 
techniques remains limited in clinical practice. 
Key challenges include model generalization 
across scanners and populations, insufficient 
training data, variable evaluation frameworks, 
and lack of clinician trust. Most importantly, large 
multi-center studies are needed to determine if 
AI tools improve diagnostic accuracy, enhance 
workflow efficiency, and benefit patient outcomes 
compared to standard imaging interpretation. But 
if AI performance and reliability reaches expert-
level, these technologies could expand access 
to consistent quantitative imaging analysis and 
objective disease monitoring in axSpA.

CliniCal iMPliCaTions

The emerging scientific fields will profoundly 
transform management of axSpA through 
enhanced prognostication, quantification, and 
treatment customization (Figure 2). Genomic 
medicine has reached an inflection point 
where polygenic risk scores could soon stratify 
individuals by genetic disease risk to enable 
targeted strategies. Advanced imaging modalities 
now allow direct visualization and sensitive 
quantification of inflammation in axial joints, 
paving the way for tightly controlled treat-to-
target approaches seeking to achieve remission 
or low disease activity. The gut microbiome 
decisive role in shaping immune function suggests 
future therapies may deliver disease modification 
by correcting underlying dysbiosis. Together, 
these advances promise a shift from reactive to 
predictive, personalized medicine.

Despite remarkable progress, substantial 
unmet needs persist given the incomplete efficacy 
and side effects of current biologics; therefore, 
new therapeutic targets are required and are 
being investigated nowadays. In this regard, the 
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pleiotropic cytokine granulocyte macrophage-
colony stimulating factor (GM-CSF) promotes 
multiple inflammatory and osteoproliferative 
processes in axSpA pathogenesis, hence it has 
been considered a possible therapeutic target.22 
However, phase II results for the GM-CSF inhibitor 
namilumab were disappointing (NCT03622658). 
This highlights the ongoing challenge of effectively 
targeting a single cytokine in a multifactorial 
disease. In contrast, the dual IL-17A/F inhibitor 
bimekizumab has now definitively demonstrated 
efficacy in phase 3 trials for active axSpA,136 and 
therefore added to the therapeutic armamentarium. 
Looking ahead, the PI3K/Akt/mammalian target 
of rapamycin (mTOR) pathway represents an 
appealing target given its dual role regulating 
aberrant IL-17 responses and pathologic new bone 
formation.137,138 Preclinical studies indicate PI3Kd 
and mTOR inhibition can potentially control 
both inflammation and osteoproliferation.139,140 

Such multifaceted strategies may be essential for 
enhanced treatment responses.

The potential impact of translating scientific 
advances into patient benefit remains immense 
yet unfulfilled. Incorporating polygenic risk scores 
into predictive algorithms could redefine screening 
approaches to enable unprecedented early detection 
in at-risk groups, thereby preventing accumulated 
damage. MRI inflammation quantification may 
allow treat-to-target strategies aimed at disease 
remission or low disease activity, an approach 
which preliminary evidence suggests correlates 
with better long-term outcomes. Applying 
machine learning to standardized imaging data 
could expand access to quantitative monitoring. 
However, rigorous comparative effectiveness 
studies are imperative to validate if emerging 
tools add value over current standards of care in 
improving patient-centered outcomes.

Figure 2. New frontiers in axSpA. An overview of emerging areas of research. Key areas highlighted include immunology, 
genetics, microbiome studies, imaging techniques, and artificial intelligence. Specific examples in each domain are listed. 
This illustrates the range of innovative techniques being applied to gain new insights into axSpA.
HLA-B27: Human leukocyte antigen B27; ILCs: Innate lymphoid cells; MAIT: Mucosal-associated invariant T; CT: Computed tomography; MRI: Magnetic 
resonance imaging; LLM: Large language model; axSpA: Axial spondyloarthritis.
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innovaTions and FuTure 
direCTions

Ongoing advances in high-throughput 
sequencing continue to unravel the intricate gene-
environment interactions underlying pathogenesis, 
powered by integrative multi-omics approaches 
defining mechanisms linking the microbiome 
and immune system. Concurrently, quantitative 
MRI techniques progress toward clinical adoption 
for responsive disease monitoring, soon to be 
augmented by multimodal machine learning 
tools like hybrid synthetic MRI/CT imaging. 
Thus, emerging areas will synergize to provide 
a multidimensional understanding of disease 
processes from molecular profiling to advanced 
imaging.

Multiple research gaps remain. Detailed 
immunophenotyping by single cell sequencing 
is needed to discern heterogeneity and predict 
treatment response. The optimal application of 
microbiome assessment and therapeutics remains 
uncertain. And crucially, robust validation in large 
multicenter studies is critical before these tools 
can be incorporated into updated management 
guidelines.

Finally, the perspective of patients must 
remain central in determining unmet needs and 
developing new technologies. Solving the right 
problems through co-creation with patients will 
ensure emerging innovations bring added value 
to improve outcomes and quality of life. In 
terms of treatments, new modes of action as 
well as combination therapies leveraging existing 
mechanisms are actively being explored to 
provide more comprehensive disease control. 
Multitarget approaches may overcome limitations 
of current monotherapies and lead to superior 
clinical efficacy. However, careful assessment of 
safety and real-world effectiveness will be needed 
as these novel agents and combinations advance 
through clinical trials.

In conclusion, scientific progress in 
understanding axSpA pathogenesis has been 
remarkable, powered by breakthroughs in 
sequencing, multi-omics profiling, advanced 
imaging, and machine learning. Collectively, 
these innovations promise to enable more 
accurate diagnosis, tightly controlled treatment, 
and substantially improved patient outcomes. 

Cross-disciplinary efforts anchored on solving 
patient needs through co-creation will ultimately 
determine success in unleashing the benefits 
of the new fields to reduce the burden of this 
disease. As we embark on a future illuminated 
by cutting-edge sequencing, advanced imaging 
and machine learning, the synergy of these 
innovations promises a new era in precision 
medicine, with patient-centric solutions driving 
transformative outcomes in axSpA.
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